报告题目:On weakly coupled elliptic systems with critical growth
报告时间:2020年9月18日15:00
报告地点:数学与系统科学学院(J9-425)
报告人简介:张建军,重庆交通大学教授,Mathematics Review 评论员,2012年博士毕业于清华大学,2012年-2014年南开大学陈省身数学研究所博士后,2014年-2015年巴西帕拉伊巴联邦大学博士后,2015年-2016年和2018年-2019年意大利因苏布里亚大学博士后,2018年7月获得意大利副教授国家资格认证,主持国家自然科学基金-面上项目、国际(地区)合作交流项目、意大利伦巴第研究员基金和中国博士后基金各一项,先后应邀访问美国,德国,意大利,葡萄牙,西班牙和巴西等多所研究机构,并多次在国际会议上作学术报告。张建军教授研究领域主要包括非线分析中的变分与拓扑方法,非线性椭圆方程等,迄今已在包括Communications in Partial Differential Equations,Journal of Differential Equations, Calculus of Variations and Partial Differential Equations, Nonlinearity, Proceedings of the Royal Society of Edinburgh, Section A Mathematics,Journal of the London Mathematical Society, Annali di Matematica Pura ed Applicata, Communications in Contemporary Mathematics等知名刊物上发表SCI论文40余篇。
报告摘要:In this talk, we are concerned with positive vector solutions of Bose-Einstein type systems in dimension four and two. The interaction is critical in the sense of Sobolev in dimension four and of critical exponential type in the sense of Moser in dimension two. In dimension four, via the Hopf fibration approach, concentration phenomena around spheres are investigated in the attractive case as the Planck constant goes to zero. As for dimension two, we prove, using variational methods, the existence of positive vector ground state solutions both in the attractive and repulsive cases.
This talk is based on joint work with Joao Marcos do O and with Daniele Cassani and Hugo Tavares.