报告题目:Deformed KP-Toda hierarchy behind several important soliton equations
报告人: 冯宝峰教授
工作单位: University of Texas Rio Grande Valley
报告时间:12月10日(周五)10:10-11:10
腾讯会议号:554693038
报告摘要:
In this talk, we will first reveal a fact that several important soliton equations: the modified Camassa-Holm equation, the Fokas-Lenells equation, the complex short pulse equation and the massive Thirring model share the same set of bilinear equations which belongs to a deformed KP-Toda hierarchy. Then, we will show this set of bilinear equations can be generated from the discrete KP equation, which paves a way for the construction of integrable discretizations of these soliton equations. In addition, it can be observed that a deformed negative flow exists and is compatible with the regular negative and positive flows. An extension of KP theory is called for to explain this fact.
报告人简介:
冯宝峰教授早年毕业于清华大学获得应用物理学及应用数学双学士学位。后留学日本获得京都大学博士学位。现任德克萨斯大学大河谷分校数学与统计学院终身教授。冯宝峰教授从事应用数学特别是非线性科学方面的研究,是可积系统方面的国际知名学者,迄今在国际刊物上发表论文近100余篇。冯宝峰教授曾先后获得两项美国国防部,四项美国自然科学基金以及两项中国自然科学基金海外及港澳学者合作基金共约150万美元的资助。目前冯宝峰教授担任国际知名杂志Physica D编辑。