Image
科学研究

学术动态

科研项目

教学成果

康静教授学术报告

发布时间:2023-05-26 阅读量:

报告题目:New revival phenomena for the bidirectional dispersive hyperbolic equations

报告人:康静教授

工作单位:西北大学

报告时间:5月27日(周六)16:00-17:00

地点:实训中心1710

报告摘要:

In this talk, the dispersive revival and fractalisation phenomena for the bidirectional dispersive hyperbolic equations on a bounded interval subject to periodic boundary conditions and discontinuous initial profiles are investigated. Firstly, we study the periodic initial-boundary problem of the linear beam equation with step function initial data, and analyze the manifestation of the revival phenomenon for the corresponding solutions at rational times. Next, we extend the investigation to the periodic initial-boundary problems of the general bidirectional dispersive hyperbolic equations. We prove that, if the initial functions are of bounded variation, the dynamical evolution of such periodic initial-boundary problem depend dramatically upon the associated dispersive relations. Integral polynomial or asymptotically integral polynomial dispersive relations produce dispersive revival/fractalization rational/irrational dichotomy effect. While, those with non-polynomial growth results in fractal profile all the time. Finally, numerical experiments are used to manifest how such effects persist into the nonlinear regime, in the concrete case of the nonlinear beam equation.

报告人简介:

康静教授,西北大学数学学院教授、博导。主要研究方向为数学物理和非线性可积系统。具体的研究课题包括:对称和李群在微分方程中的应用、非线性可积系统可积性及孤立波解、Liouville相关性理论及其应用。主持多项国家自然科学基金,一项陕西省自然科学基金杰出青年项目,入选“2017年度陕西省高校青年杰出人才支持计划”。