赵秋兰,山东邹平人,博士,学术教授,硕士生导师,山东科技大学“菁英计划”A类人才计划。发表学术论文60余篇,主持国家青年基金等各类项目3项,获得“优秀教师”“我心目中的好老师”等荣誉称号。工作之余,爱好读书与写作,目前在《山东科大报》发表40余篇文学作品。
主要研究方向:
孤子理论,可积系统,数学物理。
受教育经历:
2012/09-2015/07,山东科技大学,信息与电气工程学院控制理论与控制工程,博士
2005/09-2008/07,山东科技大学,信息科学与工程学院运筹学与控制论专业,硕士
1998/09-2002/07,山东师范大学,应用数学系,学士
工作经历:
2005/07-至今,山东科技大学,数学与系统科学学院
主讲课程:
本科生课程:常微分方程、高等数学、线性代数、概率论与数理统计、复变函数、积分变换、数学模型与数学实验
留学生课程:《Linear Algebra》and《Probability and Statistics》
研究生课程:李群与李代数、矩阵理论
科研项目:
1、山东科技大学人才计划“菁英计划”A类,40万,2020.1.1-2024.12.31
2、主持国家自然科学基金青年基金项目,11701334,非线性代数孤波系统的可积性与对称性研究,23万,2018.1-2020.12
3、主持山东省高等学校科研计划项目,J16LI12,超可积模型与非线性孤波研究,5.5万,2016.7-2019.7
4、作为主要参与人,参与多项国家、山东省部级及省教育厅科技计划项目
国际交流与学术兼职:
1、2013.01-2013.07,美国南佛罗里达大学(University of South Florida) 访问学者
2、2024.8-2025.8,清华大学 访问学者
3、美国《数学评论》(Mathematical Review)特邀评论员,多个国际数学物理期刊审稿人
主要获奖:
1、获得山东科技大学“优秀教师”“我心目中的好老师”等荣誉称号
2、指导学生方面:在全国大学生数学建模竞赛、MathorCup高校数学建模挑战赛等比赛中获得国家级二等奖、三等奖,省级一等奖等
3、高等数学、线性代数两门课程被评为“精彩课堂”
4、主持申报的成果“非线性可积系统的双非线性化方法研究” 获山东高等学校优秀科研成果奖三等奖(5人1位)
主要科研论文:
在Physica D, Chaos, Theor. Math. Phys., J. Math. Phys., Acta Appl. Math., J. Geom. Phys., Z. Angew. Math. Phys., Wave Motion等国际著名主流学术期刊上发表SCI检索研究论文60余篇,代表性学术成果如下:
l Qiulan Zhao*, Caixue Li, Xinyue Li. Quasi-periodic solutions of a discrete integrable equation with a finite-dimensional integrable symplectic structure. Physica D, 458, 133992 (2024).
l Xuejie Zhang, Qiulan Zhao*. A Kundu-nonlinear Schrödinger equation: Rogue waves, breathers, and mixed interaction solutions. Chaos, 34, 053135 (2024).
l Qian Bai, Xinyue Li, Qiulan Zhao*. Evolution of dispersive shock waves to the complex modified Korteweg-de Vries equation with higher-order effects. Chaos Solitons Fract., 182, 114731 (2024).
l Xinyue Li*, Guangfu Han, Qiulan Zhao, Chuanzhong Li. Interaction structures of multi localized waves within the Kadomtsev-Petviashvili I equation. Physica D, 446, 133671 (2023).
l Qiulan Zhao*, Caixue Li, Xinyue Li. Application of the trigonal curve to a hierarchy of generalized Toda lattices. Theor. Math. Phys., 215, 495-519 (2023).
l Qiulan Zhao*, Huijie Song, Xinyue Li. Multi-Component Coupled Fokas-Lenells Equations and Theirs Localized Wave Solutions. Acta Appl. Math., 181, 17 (2022).
l Xinyue Li, Guangfu Han, Qiulan Zhao*. Integrability, modulational instability and mixed localized wave solutions for the generalized nonlinear Schrödinger equation. Z. Angew. Math. Phy., 73(2), 52 (2022).
l Xinyue Li*, Qiulan Zhao. A new integrable symplectic map by the binary nonlinearization to the super AKNS system. J. Geom. Phys., 121, 123-137 (2017).
l Xinyue Li*, Qiulan Zhao, Yuxia Li, Huanhe Dong. A super-discrete variational identity and its application for constructing super-discrete Hamiltonian systems. J. Math. Phys., 56(3), 033504 (2015).
全部文章列表如下:
l 2024年(截止到2024年9月21日6篇):
[60] Qiulan Zhao*, Caixue Li, Xinyue Li. Quasi-periodic solutions of a discrete integrable equation with a finite-dimensional integrable symplectic structure. Physica D, 458, 133992 (2024).
[59] Xuejie Zhang, Qiulan Zhao*. A Kundu-nonlinear Schrödinger equation: Rogue waves, breathers, and mixed interaction solutions. Chaos, 34(5), 053135 (2024).
[58] Bingyu Liu, Qiulan Zhao*, Xinyue Li. Step-like initial value problem and Whitham modulation in fluid dynamics to a generalized derivative nonlinear Schrödinger equation. Phys. Fluids, 36(6), 066109 (2024).
[57] Qian Bai, Xinyue Li, Qiulan Zhao*. Evolution of dispersive shock waves to the complex modified Korteweg-de Vries equation with higher-order effects. Chaos Soliton Fract., 182, 114731 (2024).
[56] Jie Sun, Qiulan Zhao, Xinyue Li*. Symmetric structures and dynamic analysis of a (2+1)-dimensional generalized Benny-Luke equation. Phys. Scripta, 99, 105258 (2024).
[55] Xinyue Li*, Qian Bai, Qiulan Zhao. Whitham modulation theory and dam-breaking problem under periodic solutions to the defocusing Hirota equation. Theor. Math. Phys., 218(3), 388-410 (2024).
l 2023年(11篇):
[54] Qiulan Zhao*, Caixue Li, Xinyue Li. Application of the trigonal curve to a hierarchy of generalized Toda lattices. Theor. Math. Phys., 215(1), 495-519 (2023).
[53] Qiulan Zhao*, Hongbiao Cheng, Xinyue Li. Semi-discrete local and nonlocal Frobenius-coupled complex modified Korteweg-de Vries equations. Chinese J. Phys., 85, 228-240 (2023).
[52] Qiulan Zhao*, Huanjin Wang, Xinyue Li. Novel symmetric structures and explicit solutions to a coupled Hunter-Saxton equation. Phys. Scripta, 98(6), 065212 (2023).
[51] Qiulan Zhao*, Xuejie Zhang, Fahui Liu. Degenerate and bound-state solitons of a novel Kundu-nonlinear Schrödinger equation based on generalized Darboux transformation. Optik, 281, 170827 (2023).
[50] Qiulan Zhao*, Muhammad Arham Amin, Xinyue Li. Classical Darboux transformation and exact soliton solutions of a two-component complex short pulse equation. AIMS Math., 8(4), 8811-8828 (2023).
[49] Qiulan Zhao*, Caixue Li, Xinyue Li. Algebro-geometric constructions of a hierarchy of integrable semi-discrete equations. J. Nonlinear Math. Phy., 30(1), 156-183 (2023).
[48] Qiulan Zhao*, Huanjin Wang, Xinyue Li, Chuanzhong Li. Lie symmetry analysis and conservation laws for the (2+1)-dimensional dispersionless B-type Kadomtsev-Petviashvili equation. J. Nonlinear Math. Phy., 30(1), 92-113 (2023).
[47] Xinyue Li, Zhixin Zhang, Qiulan Zhao*. Localized wave solutions of a higher-order short pulse equation. Eur. Phys. J. Plus, 138(3), 218 (2023).
[46] Xinyue Li*, Jiale Zhao, Qiulan Zhao. Two-component generalized nonlinear Schrödinger equations and their soliton and breather solutions. Phys. Scripta, 98(9), 095228 (2023).
[45] Guangfu Han, Xinyue Li*, Qiulan Zhao. Localized wave solutions and mixed interaction structures in the AB system. Wave Motion, 121, 103179 (2023).
[44] Guangfu Han, Xinyue Li*, Qiulan Zhao, Chuanzhong Li. Interaction structures of multi localized waves within the Kadomtsev-Petviashvili I equation. Physica D, 446, 133671 (2023).
l 2022年(9篇):
[43] Qiulan Zhao*, Huijie Song, Xinyue Li. Multi-component coupled Fokas-Lenells equations and theirs localized wave solutions. Acta. Appl. Math., 181(1), 17 (2022).
[42] Qiulan Zhao*, Huijie Song, Xinyue Li. Higher-order rogue wave solutions of the (2+1)-dimensional Fokas-Lenells equation. Wave Motion, 115, 103065 (2022).
[41] Qiulan Zhao*, Hongbiao Cheng, Rui Cao. Dynamics analysis for the Wadati-Konno-Ichikawa (II)-short pulse equation. Appl. Math. Lett., 129, 107941 (2022).
[40] Qiulan Zhao*, Yadong Zhong, Xinyue Li. Explicit Solutions To a Hierarchy Of Discrete Coupling Korteweg-de Vries Equations. J. Appl. Anal. Comput., 12(4), 1353-1370 (2022).
[39] Qiulan Zhao*, Muhammad Arham Amin. Explicit solutions of rational integrable differential-difference equations. Partial Differ Equ Appl. Math., 5, 100338 (2022).
[38] Xinyue Li, Zhixin Zhang, Qiulan Zhao*, Chuanzhong Li. Darboux transformation of two novel two-component generalized complex short pulse equations. Rep. Math. Phys., 90(2), 157-184 (2022).
[37] Xinyue Li, Guangfu Han, Qiulan Zhao*. Interactions of localized wave and dynamics analysis in generalized derivative nonlinear Schrödinger equation. Commun. Nonlinear Sci. Numer. Simul., 114, 106612 (2022).
[36] Xinyue Li, Guangfu Han, Qiulan Zhao*. Integrability, modulational instability and mixed localized wave solutions for the generalized nonlinear Schrödinger equation. Z. Angew. Math. Phy., 73(2), 52 (2022).
[35] Qiulan Zhao, Hongbiao Cheng, Xinyue Li, Chuanzhong Li*. Integrable nonlinear perturbed hierarchies of NLS-mKdV equation and soliton solutions. Electron. J. Differ. Eq., 71, 1-32 (2022).
l 2021年(1篇):
[34] Qiulan Zhao*, Qianqian Yang, Xiangwen Qu. Characters of Explicit Solutions for a Semidiscrete Integrable Coupled Equation. Adv. Math. Phys., 2021(1), 9964540 (2021).
l 2020年(1篇):
[33] Xinyue Li*, Qiulan Zhao, Qianqian Yang. Integrable asymmetric AKNS model with multi-component. Commun. Nonlinear Sci. Numer. Simul., 91, 105434 (2020).
l 2019年(6篇):
[32] Qianqian Yang, Qiulan Zhao*, Xinyue Li. Explicit solutions and conservation laws for a new integrable lattice hierarchy. Complexity, 2019(1), 5984356 (2019).
[31] Yadong Zhong, Qiulan Zhao*, Xinyue Li. Explicit solutions to a coupled integrable lattice equation. Appl. Math. Lett., 98, 359-364 (2019).
[30] Jinting Ha, Huijun Zhang, Qiulan Zhao*. Exact solutions for a Dirac-type equation with N-fold Darboux transformation. J. Appl. Anal. Comput., 9(1), 200-210 (2019).
[29] Mingshuo Liu, Xinyue Li, Qiulan Zhao*. Exact solutions to Euler equation and Navier-Stokes equation. Z. Angew. Math. Phy., 70, 1-13 (2019).
[28] Xinyue Li*, Qiulan Zhao. Decomposing a New Nonlinear Differential-Difference System Under a Bargmann Implicit Symmetry Constraint. J. Appl. Anal. Comput., 9(5), 1884-1900 (2019).
[27] Rui Cao*, Qiulan Zhao, Lin Gao. Bilinear approach to soliton and periodic wave solutions of two nonlinear evolution equations of Mathematical Physics. Adv. Differ. Equ-ny, 2019(1), 156 (2019).
l 2017年(1篇):
[26] Xinyue Li*, Qiulan Zhao. A new integrable symplectic map by the binary nonlinearization to the super AKNS system. J. Geom. Phys., 121, 123-137 (2017).
l 2016年(1篇):
[25] Qiulan Zhao, Xinyue Li*. A Bargmann system and the involutive solutions associated with a new 4-order lattice hierarchy. Anal. Math. Phys., 6, 237-254 (2016).
l 2015年(2篇):
[24] Xinyue Li*, Qiulan Zhao, Yuxia Li, Huanhe Dong. Binary Bargmann symmetry constraint associated with 3×3 discrete matrix spectral problem. J. Nonlinear Sci. Appl., 8(5), 496-506 (2015).
[23] Xinyue Li*, Qiulan Zhao, Yuxia Li, Huanhe Dong. A super-discrete variational identity and its application for constructing super-discrete Hamiltonian systems. J. Math. Phys., 56(3), 033504 (2015).
l 2014年(1篇):
[22] Xinyue Li*, Qiulan Zhao, Yuxia Li. A new integrable symplectic map for 4-field Blaszak-Marciniak lattice equations. Commun. Nonlinear Sci. Numer. Simul., 19(7), 2324-2333 (2014).
l 2013年(5篇):
[21] Qiulan Zhao*, Xinyue Li, Fasheng Liu. Two integrable lattice hierarchies and their respective Darboux transformations. Appl. Math. Comput., 219(10), 5693-5705 (2013).
[20] Qiulan Zhao*, Xinyue Li, Fasheng Liu. Three discrete integrable coupling schemes associated with relativistic Toda lattice equation. AIP Conf. Proc., 1562(1), 265-279 (2013).
[19] Xinyue Li*, Qiulan Zhao, Yuxia Li. Bi-Integrable Couplings of a Nonsemisimple Lie Algebra by Toda Lattice Hierarchy. Rep. Math. Phys., 72(3), 333-348 (2013).
[18] Xinyue Li*, Qiulan Zhao, Yuxia Li. A discrete spectral problem and associated two types of integrable coupling systems. AIP Conf. Proc., 1562(1), 93-104 (2013).
[17] Xinyue Li*, Yuxia Li, Qiulan Zhao. New Integrable Coupling Form Associated With a Discrete Three By Three Matrix Spectral Problem. Pac. J. Math., 5(1), 1 (2013).
l 2012年(1篇):
[16] Qiulan Zhao*, Yuxia Li, Xinyue Li, Yepeng Sun. The finite-dimensional super integrable system of a super NLS-mKdV equation. Commun. Nonlinear Sci. Numer. Simul., 17(11), 4044-4052 (2012).
l 2011年(1篇):
[15] Qiulan Zhao*, Yuxia Li. The binary nonlinearization of generalized Toda hierarchy by a special choice of parameters. Commun. Nonlinear Sci. Numer. Simul., 16(8), 3257-3268 (2011).
l 2010年(3篇):
[14] Qiulan Zhao*, Xixiang Xu, Xinyue Li. The Liouville integrability of integrable couplings of Volterra lattice equation. Commun. Nonlinear Sci. Numer. Simul.,15(6), 1664-1675 (2010).
[13] Qiulan Zhao*, Yang Yu, Xuehua Li. Hamiltonian System of New Nonlinear Lattice Equations. Commun. Theor. Phys., 53(4), 624 (2010).
[12] Qiulan Zhao*, Xinzeng Wang. The integrable coupling system of a 3×3 discrete matrix spectral problem. Appl. Math. Comput., 216(3), 730-743 (2010).
l 2009年(5篇):
[11] Qiulan Zhao*, Xixiang Xu, Xinyue Li. The Liouville integrable systems associated with a new discrete 3×3 matrix spectral problem. Appl. Math. Comput., 215(7), 2557-2564 (2009).
[10] Qiulan Zhao*, Xinyue Li, Baiying He. Two super-integrable systems and associated super-hamiltonian structures. Mod. Phys. Lett. B, 23(27), 3253-3264 (2009).
[9] Xinyue Li*, Qiulan Zhao. The Darboux transformation associated with two-parameter lattice soliton equation. Commun. Nonlinear Sci. Numer. Simul., 14(7), 2956-2961 (2009).
[8] Xinyue Li*, Qiulan Zhao. New positive and negative hierarchies of integrable differential-difference equations and conservation laws. Commun. Theor. Phys., 51(1), 17 (2009).
[7] Xinyue Li*, Yuanqing Zhang, Qiulan Zhao. Positive and negative integrable hierarchies, associated conservation laws and Darboux transformation. J. Comput. Appl. Math., 233(4), 1096-1107 (2009).
l 2008年(5篇):
[6] Xinyue Li*, Xixiang Xu, Qiulan Zhao. The integrable property of Lotka-Volterra type discrete nonlinear lattice soliton systems. Mod. Phys. Lett. B, 22(21), 2007-2019 (2008).
[5] Xinyue Li*, Xixiang Xu, Qiulan Zhao. Two hierarchies of integrable lattice equations associated with a discrete matrix spectral problem. Phys. Lett. A, 372(33), 5417-5426 (2008).
[4] 赵秋兰*, 李欣越. 具有Liouville可积的非线性微分-差分方程族及其守恒律. 青岛大学学报(自然科学版), 03, 26-30+40 (2008).
[3] 李玉青*, 赵秋兰. 一族离散可积系统及其Hamilton结构. 鲁东大学学报(自然科学版), 24(04), 292-295 (2008).
[2] 李欣越, 徐西祥, 赵秋兰. 一族新的离散可积系的广义Hamilton系统及其可积耦合. 四川师范大学学报(自然科学版), 01, 60-64 (2008).
l 2007年(1篇):
[1] 李欣越, 赵秋兰, 李玉青. 基于离散的刘维尔可积系统族及其可积耦合. 青岛大学学报(自然科学版), 02, 27-31 (2007).
联系方式:个人邮箱 qlzhao@sdust.edu.cn