基本情况
张彬林,博士,教授,博士生导师。
个人资料参考网站:
https://www.researchgate.net/profile/Binlin_Zhang
研究方向
非线性分析与偏微分方程
教育经历
2002年毕业于哈尔滨商业大学冷冻冷藏专业,获工学学士
2004年毕业于哈尔滨工业大学数学系基础数学专业,获理学硕士
2013年毕业于哈尔滨工业大学数学系基础数学专业,获理学博士
工作经历
2019年9月至今于山东科技大学数学与系统科学学院任教
2006年1月 ~ 2019年8月于黑龙江工程学院数学系任教
2013年10月~ 2013年12月于意大利地中海研究中心,博士后研究工作
2014年06月~ 2017年06月于南开大学陈省身数学研究所,博士后研究工作
科研项目
1) 主持国家自然科学基金面上项目"几类基尔霍夫型分数阶Laplace问题研究", 基金号:11871199, 执行期: 2019.01-2022.12.
2) 参与国家自然科学基金青年基金项目"双临界分数阶椭圆型方程(组)解的存在性及其性态研究" (排序第二), 基金号:11701178, 执行期: 2018.01-2020.12.
3) 参与国家自然科学基金青年基金项目 "几类非局部分数阶椭圆型系统解的存在性与多重性研究" (排序第二), 基金号:11601515, 执行期: 2017.01-2019.12.
4) 主持中国博士后科学基金项目"具有临界指数的分数阶薛定谔方程解的存在性与多重性", 基金号:2015M581287,执行期:2015.11-2017.06.
5) 主持黑龙江省博士后科研启动金项目"若干基尔霍夫型分数阶Laplace问题研究",基金号:LBH-Q18109,执行期:2019.01-2020.12.
6)参与2013年黑龙江省自然科学基金面上项目,排序第二,基金号:A201306,执行期:2014.1-2016.12, 项目名称:Clifford 值变指数函数空间及其在流体动力学中的应用.
7)主持2013年黑龙江省教育厅科研项目,基金号:12541667,执行期:2014.1-2016.12,项目名称:Clifford 分析中的变指数函数空间理论及其应用.
获奖情况
2016年8月,首届黑龙江省数学会优秀青年学术奖 (排序第二)
2018年1月,2018年黑龙江省高校科学技术二等奖(排序第一)
学术兼职
2015年5月,国际数学期刊《Nonlinear Analysis and Differential Equations》编委
2016年8月,国际数学期刊《Advances in Nonlinear Analysis》(SCI检索期刊,影响因子为6.636, 中科院最新分区1区)编委.
2017年5月,国际数学期刊《Boundary Value Problems》(SCI检索期刊,影响因子为1.637, 中科院最新分区3区)编委.
2017年9月,国际数学期刊《Electronic Journal of Differential Equations》(SCI检索期刊,影响因子为0.69, 中科院最新分区3区)荣誉编委.
2019年1月,国际数学期刊《Complex Variables and Elliptic Equations》(SCI检索期刊,影响因子为0.801, 中科院最新分区4区)编委.
2019年3月,国际数学期刊《Opuscula Mathematica》(ESCI检索期刊)编委.
2017年6月,入选为美国数学会《数学评论》评论员.
部分学术论文(以下论文均被SCI检索,带星号表示通讯作者)
[85] Mingzheng Sun, Jiabao Su, Binlin Zhang*,Critical groups and multiple solutions for Kirchhoff type equations with critical exponents, Communications in Contemporary Mathematics, 2020, 2050031, doi: 10.1142/S0219199720500315.
[84] Sihua Liang, Lixi Wen, Binlin Zhang*, Solutions for a class of quasilinear Choquard equations with Hardy-Littlewood-Sobolev critical nonlinearity, Nonlinear Analysis, 2020, 198, 111888.
[83] Mingqi Xiang, Binlin Zhang*, Homoclinic solutions for fractional discrete Laplacian equations, Nonlinear Analysis, 2020, 198, 111886.
[82] Huyuan Chen, Mouhamed Moustapha Fall, Binlin Zhang*, On isolated singularities of Kirchhoff equations, Advances in Nonlinear Analysis, 2021, 10: 102-120.
[81] Mingqi Xiang, Binlin Zhang*, Die Hu, Kirchhoff-type differential inclusion problems involving the fractional Laplacian and strong damping, Electronic Research Archive, doi:10.3934/era.2020034.
[80] Binhua Feng, Jiayin Liu, Huiling Niu, Binlin Zhang*, Strong instability of standing waves for a fourth-order nonlinear Schrodinger equation with the mixed dispersions, Nonlinear Analysis, 2020, 196, 111791.
[79] Mei Yu, Xia Zhang, Binlin Zhang*, Property of solutions for elliptic equation involving the higher-order fractional Laplacian in R^n_+, Communications on Pure and Applied Analysis, 2020, 19: 3597-3612.
[78] Weping Yan, Binlin Zhang*, Quasi-periodic relativistic strings in the Minkowski space R^{1+n}, The Journal of Geometric Analysis, doi: 10.1007/s12220-019-00336-7.
[77] Bitao Cheng, Jianhua Chen, Binlin Zhang*, Least energy nodal solutions for Kirchhoff--type Laplacian problems, Mathematical Methods in the Applied Sciences, 2020, 43: 3827-3849.
[76] Sihua Liang, Dusan Repovs, Binlin Zhang*, Fractional magnetic Schrodinger-Kirchhoff problems with convolution and critical nonlinearities, Mathematical Methods in the Applied Sciences, 2020, 43: 2473-2490.
[75] Sitong Chen, Vicenţiu D. Rǎdulescu, Xianhua Tang, Binlin Zhang*,Ground state solutions for quasilinear Schrodinger equations with variable potential and superlinear reaction, Revista Matemática Iberoamericana, doi: 10.4171/rmi/1175.
[74] Mingqi Xiang, Di Yang, Binlin Zhang*, Homoclinic solutions for Hamiltonian systems with variable-order fractional derivatives, Complex Variables and Elliptic Equations, doi: 10.1080/17476933.2019.1652281.
[73] Weping Yan, Binlin Zhang*, Long time existence for the bosonic membrane in the light cone gauge, The Journal of Geometric Analysis, doi: 10.1007/s12220-019-00269-1.
[72] Mingqi Xiang, Di Yang, Binlin Zhang*, Degenerate Kirchhoff-type fractional diffusion problem with logarithmic nonlinearity, Asymptotic Analysis, doi: 10.3233/ASY-191564.
[71] Li Wang, Kun Cheng, Binlin Zhang*, A uniqueness result for strong singular Kirchhoff-type fractional Laplacian problems, Applied Mathematics & Optimization, doi: 10.1007/s00245-019-09612-y.
[70] Xia Zhang, Binlin Zhang*, A multiplicity result for a class of fractional p-Laplacian equations with perturbations in R^N, Complex Variables and Elliptic Equations, doi: 10.1080/17476933.2019.1574775.
[69] Sihua Liang, Binlin Zhang*, Fractional p-Kirchhoff problems involving critical exponents and sign-changing weight functions, Asymptotic Analysis, doi: 10.3233/ASY-191527.
[68] Mingqi Xiang, Binlin Zhang*, Vicenţiu D. Rǎdulescu, Superlinear Schrodinger-Kirchhoff type problems involving the fractional p-Laplacian and critical exponent, Advances in Nonlinear Analysis, 2020, 9: 690-709.
[67] Sitong Chen, Binlin Zhang*,Xianhua Tang, Existence and non-existence results for Kirchhoff-type problems with convolution nonlinearity, Advances in Nonlinear Analysis, 2020, 9:148-167.
[66] Zhang Binlin, Alessio Fiscella, Sihua Liang, Infinitely many solutions for critical degenerate Kirchhoff type equations involving the fractional p-Laplacian, Applied Mathematics & Optimization, 2019, 80: 63-80.
[65] Zhang Binlin*, Vicenţiu D. Rǎdulescu, Li Wang, Existence results for Kirchhoff-type superlinear problems involving the fractional Laplacian, Proceedings of the Royal Society of Edinburgh, Section A: Mathematics, 2019, 149: 1061-1081.
[64] Patrizia Pucci, Mingqi Xiang, Binlin Zhang,Existence results for Schrodinger-Choquard-Kirchhoff equations involving the fractional p-Laplacian, Advances in Calculus of Variations, 2019, 12: 253-275 .
[63] Xiang Mingqi, Vicenţiu D. Rǎdulescu, Binlin Zhang,A critical fractional Choquard-Kirchhoff problem with magnetic field, Communications in Contemporary Mathematics. 21, 2019, 1850004.
[62] Mingqi Xiang, Binlin Zhang*, A remark on fractional p-Kirchhoff problems involving multiple zeros, Complex Variables and Elliptic Equations, 2019, 64: 1655-1665.
[61] Ning Pan, Patrizia Pucci, Runzhang Xu, Binlin Zhang*, Degenerate Kirchhoff-type wave problems involving the fractional Laplacian with nonlinear damping and source terms, Journal of Evolution Equations, 2019, 19: 615-643.
[60] Mingqi Xiang, Binlin Zhang*,Dusan Rapovs, Existence and multiplicity of solutions for fractional Schrödinger–Kirchhoff equations with Trudinger–Moser nonlinearity, Nonlinear Analysis: Theory, Methods & applications, 2019, 186 : 74-98.
[59] Xiang Mingqi, Vicenţiu D. Rǎdulescu, Binlin Zhang, Fractional Kirchhoff problems with critical Trudinger-Moser nonlinearity, Calculus of Variations and Partially Differential Equations, 58 2019, 58:57, 27 pp.
[58] Sitong Chen, Binlin Zhang*,Xianhua Tang, Existence and concentration of semiclassical ground state solutions for the generalized Chern-Simons-Schrodinger system in H^1(R^2), Nonlinear Analysis, 2019, 185: 68-96.
[57] Chao Ji, Fei Fang, Binlin Zhang*,A multiplicity result for asymptotically linear Kirchhoff equations, Advances in Nonlinear Analysis, 2019, 8: 267-277.
[56] Alessio Fiscella, Patrizia Pucci, Binlin Zhang,p-fractional Hardy-Schrodinger-Kirchhoff systems with critical nonlinearities, Advances in Nonlinear Analysis, 2019, 8: 1111-1131.
[55] Mingqi Xiang, Binlin Zhang*, Di Yang, Multiplicity results for variable-order fractional Laplacian equations with variable growth, Nonlinear Analysis, 2019, 178: 190-204.
[54] Mingqi Xiang, Binlin Zhang*, A critical fractional p-Kirchhoff type problem involving discontinuous nonlinearity, Discrete and Continuous Dynamical Systems-Series S, 2019, 12: 413-433.
[53] Wang Li, Vicenţiu D. Rǎdulescu, Binlin Zhang*, Infinitely many solutions for fractional Kirchhoff-Schrodinger-Poisson systems, Journal of Mathematical Physics, 2019, 60, 011506.
[52] Xiang Mingqi, Vicenţiu D. Rǎdulescu, Binlin Zhang*,Nonlocal Kirchhoff diffusion problems: local existence and blow-up of solutions, Nonlinearity, 2018, 31: 3228-3250.
[51] Mingqi Xiang, Vicentiu D. Radulescu, Binlin Zhang*, Combined effects for fractional Schrodinger-Kirchhoff systems with critical nonlinearities, ESAIM: Control, Optimization and Calculus of Variations, 2018, 24: 1249-1273.
[50] Sihua Liang, Giovanni Molica Bisci, Binlin Zhang*, Multiple solutions for a noncooperative Kirchhoff-type system involving the fractional p-Laplacian and critical exponents, Mathematische Nachrichten, 2018, 291: 1553-1546.
[49] Lifeng Guo, Binlin Zhang*,Yadong Zhang,Fractional p-Laplacian equations on Riemannian manifolds, Electronic Journal of Differential Equations, 2018, 2018:1-17.
[48] Ning Pan, Patrizia Pucci, Binlin Zhang*, Degenerate Kirchhoff-type hyperbolic problems involving the fractional Laplacian, Journal of Evolution Equations, 2018, 18: 385-409.
[47] Zhang Binlin, Marco Squassina, Xia Zhang, Fractional NLS equations with magnetic field, critical frequency and critical growth, Manuscripta Mathematica, 2018, 155: 115-140.
[46] Sihua Liang, Dusan, Rapovs, Binlin Zhang*, On the fractional Schrodinger-Kirchhoff equations with electromagnetic fields and critical nonlinearity, Computers & Mathematical with Applications, 2018, 75: 1778-1794.
[45] Li Wang, Kun Xie, Binlin Zhang*, Existence and multiplicity of solutions for critical Kirchhoff-type p-Laplacian problems, Journal of Mathematical Analysis and Applications, 2018, 458: 361-378.
[44] Li Wang, Binlin Zhang*, Kun Cheng, Ground state sign-changing solutions for the Schrödinger–Kirchhoff equation in R^3, Journal of Mathematical Analysis and Applications, 2018, 466: 1545-1569.
[43] Mingqi Xiang, Binlin Zhang*, Xia Zhang, A critical Kirchhoff type problem involving the fractional p-Laplacian in R^N, Complex Variables and Elliptic Equations, 2018, 63: 652-670.
[42] Patrizia Pucci, Mingqi Xiang, Binlin Zhang*,A diffusion problem of Kirchhoff type involving the nonlocal fractional p-Laplacian, Discrete and Continuous Dynamical Systems - Series A, 2017, 37: 4035-4051.
[41] Ning Pan, Binlin Zhang*, Jun Cao,Degenerate Kirchhoff-type diffusion problems involving the fractional p-Laplacian, Nonlinear Analysis: Real World Applications, 2017, 37: 56-70.
[40] Mingqi Xiang, Binlin Zhang*,Hong Qiu, Existence of solutions for a critical fractional Kirchhoff type problem in R^N, Science China Mathematics, 2017, 60: 1647-1660.
[39] Li Wang, Binlin Zhang*, Haijin Zhang, Fractional Laplacian system involving doubly critical nonlinearities in R^N, Electronic Journal of Qualitative Theory of Differential Equations, 2017, 57: 1-17.
[38] Chao Ji, Fei Fang, Binlin Zhang*,Least energy sign-changing solutions for the nonlinear Schrodinger-Poisson system, Electronic Journal of Differential Equations, 2017, 2017:1-13.
[37] Zhang Binlin, Giovanni Molica Bisci, Mingqi Xiang. Multiplicity results for nonlocal fractional p-Kirchhoff equations via Morse theory. Topological Methods in Nonlinear Analysis, 2017, 49: 445-461.
[36] Mingqi Xiang, Binlin Zhang*,Xia Zhang, A nonhomogeneous fractional p-Kirchhoff type problem involving critical exponent in R^N, Advanced Nonlinear Studies, 2017, 17: 611-640.
[35] Rui Niu, Hongtao Zheng, Binlin Zhang, Navier-Stokes equations in the half-space in variable exponent spaces of Clifford-valued functions, Electronic Journal of Differential Equations, 2017, 2017: 1-21.
[34] Mingqi Xiang, Patrizia Pucci, Marco Squassina, Binlin Zhang, Nonlocal Schrodinger-Kirchhoff equations with magnetic field, Discrete and Continuous Dynamical Systems - Series A, 2017, 37: 503-521.
[33] Chao Ji, Jie Liao, Binlin Zhang*, Ground state solutions and multiple solutions for a p(x)-Laplacian equation in R^N with periodic data. Complex Variables and Elliptic Equations, 2017, 62: 825-837.
[32] Mingqi Xiang, Fuliang Wang, Binlin Zhang*, Existence and multiplicity of solutions for p(x)-curl systems arising in electromagnetism, Journal of Mathematical Analysis and Applications, 2017, 448: 1600-1617.
[31] Mingqi Xiang, Binlin Zhang*,Vicenţiu D. Rǎdulescu, Existence of solutions for perturbed fractional p-Laplacian equations, Journal of Differential Equations, 2016, 260: 1392-1413.
[30] Mingqi Xiang, Giovanni Molica Bisci, Guohua Tian, Binlin Zhang*,Infinitely many solutions for the stationary Kirchhoff problems involving the fractional p-Laplacian, Nonlinearity, 2016, 29: 357-374.
[29] Mingqi Xiang, Binlin Zhang*, Vicentiu D. Radulescu, Multiplicity of solutions for a class of quasilinear Kirchhoff system involving the fractional p-Laplacian, Nonlinearity, 2016, 29: 3186-3205.
[28] Patrizia Pucci, Mingqi Xiang, Binlin Zhang*,Existence and multiplicity of entire solutions for fractional p-Kirchhoff equations, Advances in Nonlinear Analysis, 2016, 5: 27-55.
[27] Li Wang, Binlin Zhang*, Infinitely many solutions for Schrodinger-Kirchhoff type equations involving the fractional p-Laplacian and critical exponent, Electronic Journal of Differential Equations, 2016, 2016: 1-18.
[26] Mingqi Xiang, Binlin Zhang*,Zhe Wei, Existence of solutions to a class of quasilinear Schrodinger system involving the fractional p-Laplacian, Electronic Journal of Qualitative Theory of Differential Equations, 2016, 2016: 1-15.
[25] Fei Fang, Chao Ji, Binlin Zhang, Multiple solutions for biharmonic elliptic problem with the second Hessian, Electronic Journal of Differential Equations, 2016, 2016: 1-16.
[24] Ning Pan, Binlin Zhang*, Jun Cao, Weak solutions for parabolic equations with p(x)-growth, Electronic Journal of Differential Equations. 2016, 2016: 1-15.
[23] Xia Zhang, Binlin Zhang*,Mingqi Xiang, Ground states for fractional Schrodinger equations involving a critical nonlinearity, Advances in Nonlinear Analysis, 2016, 5: 293-314.
[22] Mingqi Xiang, Binlin Zhang*,Miaomiao Yang. A fractional Kirchhoff type problem in R^N without the (AR) condition. Complex Variables and Elliptic Equations, 2016, 61: 1481-1493.
[21] Xia Zhang, Binlin Zhang*, Dusan Repovs, Existence and symmetry of solutions for critical fractional Schrodinger equations with bounded potentials. Nonlinear Analysis: Theory, Methods & applications, 2016, 142: 48-68.
[20] Mingqi Xiang, Binlin Zhang*,Vicenţiu D. Rǎdulescu, Existence of solutions for a bi-nonlocal fractional p-Kirchhoff type problem, Computers & Mathematical with Applications. 2016, 71 : 255-266.
[19] Patrizia Pucci, Mingqi Xiang, Binlin Zhang*, Multiple solutions for nonhomogeneous Schrodinger-Kirchhoff type equations involving the fractional p-Laplacian in R^N, Calculus of Variations and Partial Differential Equations, 2015, 54: 2785-2806.
[18] Binlin Zhang*,Giovanni Molica Bisci, Raffaella Servadei, Superliner nonlocal fractional problems with infinitely many solutions, Nonlinearity, 2015, 28: 2247-2264.
[17] Mingqi Xiang, Binlin Zhang*,Massimiliano Ferrara, Existence of solutions for Kirchhoff type problem involving the non-local fractional p-Laplacian, Journal of Mathematical Analysis and Applications, 2015, 424: 1021-1041.
[16] Mingqi Xiang, Binlin Zhang*,Xiuying Guo, Infinitely many solutions for a fractional Kirchhoff type problem via Fountain Theorem, Nonlinear Analysis, 2015, 120: 299-313.
[15] Mingqi Xiang, Yongqiang Fu, Binlin Zhang*,Existence and boundedness of solutions for evolution variational inequalities with p(x,t)-growth. Electronic Journal of Differential Equations. 2015, 2015: 1-23.
[14] Mingqi Xiang, Binlin Zhang*, Degenerate Kirchhoff problems involving the fractional p-Laplacian without the (AR) condition, Complex Variables and Elliptic Equations, 2015, 60: 1277-1287.
[13] Yongqiang Fu, Vicenţiu D. Rǎdulescu, Binlin Zhang,Hodge decomposition of variable exponent spaces of Clifford-valued functions and applications to Dirac and Stokes equations, Computers & Mathematics with applications, 2015, 70: 691-704.
[12] Giovanni Molica Bisci, Vicenţiu D. Rǎdulescu, Binlin Zhang,Existence of stationary states for A-Dirac equations with variable growth, Advances in Applied Clifford Algebras, 2015, 25: 385-402.
[11] Mingqi Xiang, Binlin Zhang*,Massimiliano Ferrara. Multiplicity results for the non-homogeneous fractional p-Kirchhoff equations with concave-convex nonlinearities, Proceedings of the Royal Society A-Mathematical Physical and Engineering Sciences, 2015, 471(2177): 1-14.
[10] Binlin Zhang*,Massimiliano Ferrara. Multiplicity of solutions for a class of superlinear non-local fractional equations, Complex Variables and Elliptic Equations, 2015, 60: 583-595.
[9] Binlin Zhang*, Massimiliano Ferrara. Two weak solutions for perturbed non-local fractional equations, Applicable Analysis, 2015, 94(5): 891-902.
[8] Rui Niu, Hongtao Zheng, Binlin Zhang*,Navier-Stokes equations with variable viscosity in variable exponent spaces of Clifford-valued functions, Boundary Value Problems, 2015, 2015: 1-17.
[7] Massimiliano Ferrara, Giovanni Molica Bisci, Binlin Zhang, Existence of weak solutions for non-local fractional problems via Morse theory, Discrete and Continuous Dynamical Systems-Series B. 2014, 19: 2483-2499.
[6] Binlin Zhang*,Yongqiang Fu, Vicenţiu D. Rǎdulescu. The stationary Navier-Stokes equations in variable exponent spaces of Clifford-valued functions, Advances in Applied Clifford Algebras, 2014, 24: 231-252.
[5] Vicenţiu D. Rǎdulescu, Binlin Zhang,Morse theory and local linking for a nonlinear degenerate problem arising in the theory of electrorheological fluids, Nonlinear Analysis: Real World Applications, 2014, 17: 311-321.
[4] Massimiliano Ferrara, Luca Guerrini, Binlin Zhang,Multiple solutions for perturbed non-local fractional equations, Electronic Journal of Differential Equations, 2013, 2013:1-10.
[3] Yongqiang Fu, Binlin Zhang*,Weak solutions for elliptic systems with variable growth in Clifford analysis, Czechoslovak Mathematical Journal, 2013, 63:643-670.
[2] Yongqiang Fu, Binlin Zhang*,Clifford valued weighted variable exponent spaces with an application to obstacle problems, Advances in Applied Clifford Algebras, 2013, 23:363-376.
[1] Binlin Zhang*,Yongqiang Fu, Weak solutions for A-Dirac equations with variable growth in Clifford analysis, Electronic Journal of Differential Equations, 2012, 2012 (227):1-10.
发表专著
付永强,张夏,郭立丰,张彬林著,变指数函数空间及其应用(第二版),北京:科学出版社,2019,371页。
联系方式
Email: zhangbinlin@sdust.edu.cn