Image
师资队伍

师资概况

教师队伍

类型分类

李欣越

发布时间:2018-03-26 阅读量:

个人简介:

李欣越,四川南部人,博士,副教授,硕士生导师

主要研究方向: 

数学物理,孤子理论,可积系统及应用。

教育经历:

2012/09-2015/07,山东科技大学,控制理论与控制工程,博士

2005/09-2008/07,山东科技大学,运筹学与控制论专业,硕士

1998/09-2002/07,山东大学,应用数学,学士

工作经历:

2002/07-至今,山东科技大学,数学与系统科学学院

主讲课程:

高等数学,常微分方程,线性代数,概率论与数理统计,复变函数,积分变换,场论

研究领域

数学物理,孤子理论,可积系统及应用

科研项目:

1、主持山东省自然科学基金项目,超离散可积系统及其超对称约束技巧,ZR2012AQ015,2012.7-2015.7

2、主持山东省高等学校科研计划项目,超可积孤子方程与超可积辛映射研究,J12LI03,2012.6-2014.12

3、作为前三位参与人,参与多项国家自然基金项目

国际交流与学术兼职:

2013年访问美国南佛罗里达大学(University of South Florida); 美国《数学评论》(Mathematical Review)特邀评论员;多个数学物理国际期刊审稿人

主要获奖

“关于高维非线性离散物理模型可积性质研究”获山东省高等学校优秀科研成果奖三等奖(第一位);获“泰安市青年科技贡献奖”, 泰安市科学技术协会;获得“我心目中的好老师”、“优秀科技创新指导教师”等荣誉称号

主要科研论文

  在Physica D , JMP, JGP, JCAM, ZAMP, JNMP,CNSNS等国内外著名SCI学术期刊上发表研究论文,代表性学术成果如下:

l Qiulan Zhao*, Caixue Li, Xinyue Li. Quasi-periodic solutions of a discrete integrable equation with a finite-dimensional integrable symplectic structure. Physica D, 458, 133992 (2024).

l Qian Bai, Xinyue Li, Qiulan Zhao*. Evolution of dispersive shock waves to the complex modified Korteweg-de Vries equation with higher-order effects. Chaos Solitons Fract., 182, 114731 (2024).

l Xinyue Li*, Guangfu Han, Qiulan Zhao, Chuanzhong Li. Interaction structures of multi localized waves within the Kadomtsev-Petviashvili I equation. Physica D, 446, 133671 (2023).

l Qiulan Zhao*, Caixue Li, Xinyue Li. Application of the trigonal curve to a hierarchy of generalized Toda lattices. Theor. Math. Phys., 215, 495-519 (2023).

l Qiulan Zhao*, Huijie Song, Xinyue Li. Multi-Component Coupled Fokas-Lenells Equations and Theirs Localized Wave Solutions. Acta Appl. Math., 181, 17 (2022).

l Xinyue Li, Guangfu Han, Qiulan Zhao*. Integrability, modulational instability and mixed localized wave solutions for the generalized nonlinear Schrödinger equation. Z. Angew. Math. Phy., 73(2), 52 (2022).

l Xinyue Li*, Qiulan Zhao. A new integrable symplectic map by the binary nonlinearization to the super AKNS system. J. Geom. Phys., 121, 123-137 (2017).

l Xinyue Li*, Qiulan Zhao, Yuxia Li, Huanhe Dong. A super-discrete variational identity and its application for constructing super-discrete Hamiltonian systems. J. Math. Phys., 56(3), 033504 (2015).

全部文章列表如下:

l 2024年(截止到2024年9月21日5篇):

[60] Xinyue Li*, Qian Bai, Qiulan Zhao. Whitham modulation theory and dam-breaking problem under periodic solutions to the defocusing Hirota equation. Theor. Math. Phys., 218(3), 388-410 (2024).

[59] Jie Sun, Qiulan Zhao, Xinyue Li*. Symmetric structures and dynamic analysis of a (2+1)-dimensional generalized Benny-Luke equation. Phys. Scripta, 99, 105258 (2024).

[58] Qian Bai, Xinyue Li, Qiulan Zhao*. Evolution of dispersive shock waves to the complex modified Korteweg-de Vries equation with higher-order effects. Chaos Soliton Fract., 182, 114731 (2024).

[57] Bingyu Liu, Qiulan Zhao*, Xinyue Li. Step-like initial value problem and Whitham modulation in fluid dynamics to a generalized derivative nonlinear Schrödinger equation. Phys. Fluids, 36(6), 066109 (2024).

[56] Qiulan Zhao*, Caixue Li, Xinyue Li. Quasi-periodic solutions of a discrete integrable equation with a finite-dimensional integrable symplectic structure. Physica D, 458, 133992 (2024).

l 2023年(10篇):

[55] Xinyue Li*, Jiale Zhao, Qiulan Zhao. Two-component generalized nonlinear Schrödinger equations and their soliton and breather solutions. Phys. Scripta, 98(9), 095228 (2023).

[54] Guangfu Han, Xinyue Li*, Qiulan Zhao, Chuanzhong Li. Interaction structures of multi localized waves within the Kadomtsev-Petviashvili I equation. Physica D, 446, 133671 (2023).

[53] Guangfu Han, Xinyue Li*, Qiulan Zhao. Localized wave solutions and mixed interaction structures in the AB system. Wave Motion, 121, 103179 (2023).

[52] Xinyue Li, Zhixin Zhang, Qiulan Zhao*. Localized wave solutions of a higher-order short pulse equation. Eur. Phys. J. Plus, 138(3), 218 (2023).

[51] Qiulan Zhao*, Hongbiao Cheng, Xinyue Li. Semi-discrete local and nonlocal Frobenius-coupled complex modified Korteweg-de Vries equations. Chinese J. Phys., 85, 228-240 (2023).

[50] Qiulan Zhao*, Huanjin Wang, Xinyue Li. Novel symmetric structures and explicit solutions to a coupled Hunter-Saxton equation. Phys. Scripta, 98(6), 065212 (2023).

[49] Qiulan Zhao*, Caixue Li, Xinyue Li. Application of the trigonal curve to a hierarchy of generalized Toda lattices. Theor. Math. Phys., 215(1), 495-519 (2023).

[48] Qiulan Zhao*, Muhammad Arham Amin, Xinyue Li. Classical Darboux transformation and exact soliton solutions of a two-component complex short pulse equation. AIMS Math., 8(4), 8811-8828 (2023).

[47] Qiulan Zhao*, Caixue Li, Xinyue Li. Algebro-geometric constructions of a hierarchy of integrable semi-discrete equations. J. Nonlinear Math. Phy., 30(1), 156-183 (2023).

[46] Qiulan Zhao*, Huanjin Wang, Xinyue Li, Chuanzhong Li. Lie symmetry analysis and conservation laws for the (2+1)-dimensional dispersionless B-type Kadomtsev-Petviashvili equation. J. Nonlinear Math. Phy., 30(1), 92-113 (2023).

l 2022年(7篇):

[45] Xinyue Li, Guangfu Han, Qiulan Zhao*. Interactions of localized wave and dynamics analysis in generalized derivative nonlinear Schrödinger equation. Commun. Nonlinear Sci. Numer. Simul., 114, 106612 (2022).

[44] Xinyue Li, Guangfu Han, Qiulan Zhao*. Integrability, modulational instability and mixed localized wave solutions for the generalized nonlinear Schrödinger equation. Z. Angew. Math. Phys., 73(2), 52 (2022).

[43] Xinyue Li, Zhixin Zhang, Qiulan Zhao*, Chuanzhong Li. Darboux transformation of two novel two-component generalized complex short pulse equations. Rep. Math. Phys., 90(2), 157-184 (2022).

[42] Qiulan Zhao*, Huijie Song, Xinyue Li. Multi-component coupled Fokas-Lenells equations and theirs localized wave solutions. Acta. Appl. Math., 181(1), 17 (2022).

[41] Qiulan Zhao*, Huijie Song, Xinyue Li. Higher-order rogue wave solutions of the (2+1)-dimensional Fokas-Lenells equation. Wave Motion, 115, 103065 (2022).

[40] Qiulan Zhao*, Yadong Zhong, Xinyue Li. Explicit Solutions To a Hierarchy Of Discrete Coupling Korteweg-de Vries Equations. J. Appl. Anal. Comput., 12(4), 1353-1370 (2022).

[39] Qiulan Zhao, Hongbiao Cheng, Xinyue Li, Chuanzhong Li*. Integrable nonlinear perturbed hierarchies of NLS-mKdV equation and soliton solutions. Electron. J. Differ. Eq., 71, 1-32 (2022).

l 2020年(2篇):

[38] Xinyue Li*, Qiulan Zhao, Qianqian Yang. Integrable asymmetric AKNS model with multi-component. Commun. Nonlinear Sci. Numer. Simul., 91, 105434 (2020).

[37] Hanze Liu*, Chenglin Bai, Xiangpeng Xin, Xinyue Li. Equivalent transformations and exact solutions to the generalized cylindrical KdV type of equation. Nucl. Phys. B, 952, 114924 (2020).

l 2019年(6篇):

[36] Xinyue Li*, Qiulan Zhao. Decomposing a New Nonlinear Differential-Difference System Under a Bargmann Implicit Symmetry Constraint. J. Appl. Anal. Comput., 9(5), 1884-1900 (2019).

[35] Mingshuo Liu, Xinyue Li, Qiulan Zhao*. Exact solutions to Euler equation and Navier-Stokes equation. Z. Angew. Math. Phys., 70, 1-13 (2019).

[34] Chuanzhong Li*, Xinyue Li, Fushan Li. Quantum torus Lie algebra in the q-deformed Kadomtsev-Petviashvili system. Algebr. Colloq., 26(04), 579-588 (2019).

[33] Qianqian Yang, Qiulan Zhao*, Xinyue Li. Explicit solutions and conservation laws for a new integrable lattice hierarchy. Complexity, 2019(1), 5984356 (2019).

[32] Yadong Zhong, Qiulan Zhao*, Xinyue Li. Explicit solutions to a coupled integrable lattice equation. Appl. Math. Lett., 98, 359-364 (2019).

[31] 哈金婷, 李欣越, 张辉群*. 有理函数变换法求扩展(3+1)Jimbo-Miwa方程丰富的精确解(英文). 上海师范大学学报(自然科学版), 48(03), 261-271 (2019).

l 2018年(1篇):

[30] Huijuan Zhou, Chuanzhong Li*, Xinyue Li, Fushan Li. Nonlocal symmetries of Frobenius sinh-Gordon systems. Adv. Differ. Equ-ny., 1-7 (2018), .

l 2017年(2篇):

[29] Xinyue Li*, Qiulan Zhao. A new integrable symplectic map by the binary nonlinearization to the super AKNS system. J. Geom. Phys., 121, 123-137 (2017).

[28] Song Tao, Chuanzhong Li*, Xinyue Li. Gauge transformations of the multi-component BKP and CKP hierarchies. Mod. Phys. Lett. B, 30, 1750280 (2017).

l 2016年(1篇):

[27] Qiulan Zhao, Xinyue Li*. A Bargmann system and the involutive solutions associated with a new 4-order lattice hierarchy. Anal. Math. Phys., 6, 237-254 (2016).

l 2015年(2篇):

[26] Xinyue Li*, Qiulan Zhao, Yuxia Li, Huanhe Dong. Binary Bargmann symmetry constraint associated with 3×3 discrete matrix spectral problem. J. Nonlinear Sci. Appl., 8(5), 496-506 (2015).

[25] Xinyue Li*, Qiulan Zhao, Yuxia Li, Huanhe Dong. A super-discrete variational identity and its application for constructing super-discrete Hamiltonian systems. J. Math. Phys., 56(3), 033504 (2015).

l 2014年(1篇):

[24] Xinyue Li*, Qiulan Zhao, Yuxia Li. A new integrable symplectic map for 4-field Blaszak-Marciniak lattice equations. Commun. Nonlinear Sci. Numer. Simul., 19(7), 2324-2333 (2014).

l 2013年(5篇):

[23] Xinyue Li*, Qiulan Zhao, Yuxia Li. Bi-Integrable Couplings of a Nonsemisimple Lie Algebra by Toda Lattice Hierarchy. Rep. Math. Phys., 72(3), 333-348 (2013).

[22] Xinyue Li*, Qiulan Zhao, Yuxia Li. A discrete spectral problem and associated two types of integrable coupling systems. AIP Conf. Proc., 1562(1), 93-104 (2013).

[21] Xinyue Li*, Yuxia Li, Qiulan Zhao. New Integrable Coupling Form Associated With a Discrete Three By Three Matrix Spectral Problem. Pac. J. Math., 5(1), 1 (2013).

[20] Qiulan Zhao*, Xinyue Li, Fasheng Liu. Three discrete integrable coupling schemes associated with relativistic Toda lattice equation. AIP Conf. Proc., 1562(1), 265-279 (2013).

[19] Qiulan Zhao*, Xinyue Li, Fasheng Liu. Two integrable lattice hierarchies and their respective Darboux transformations. Appl. Math. Comput., 219(10), 5693-5705 (2013).

l 2012年(1篇):

[18] Qiulan Zhao*, Yuxia Li, Xinyue Li, Yepeng Sun. The finite-dimensional super integrable system of a super NLS-mKdV equation. Commun. Nonlinear Sci. Numer. Simul., 17(11), 4044-4052 (2012).

l 2011年(2篇):

[17] Xinyue Li*, Yuxia Li, Hongxiang Yang. Two families of Liouville integrable lattice equations. Appl. Math. Comput., 217, 8671-8682 (2011).

[16] Xinyue Li*, Xiaojing Li, Yuxia Li. The Liouville integrable lattice equations associated with a discrete three-by-three matrix spectral problem. Int. J. Mod. Phys. B, 25, 1251-1261 (2011).

l 2010年(3篇):

[15] Xinyue Li*, Hongwei Song, Higher-Dimensional Lie Algebra and New Integrable Coupling of Discrete KdV Equation, Commun. Theor. Phys., 54, 7-15 (2010).

[14] Xinyue Li*, Minli Han, Hongwei Song. Positive and negative integrable hierarchies of a new discrete soliton system. Chin. J. Phys., 48, 68-81 (2010).

[13] Qiulan Zhao*, Xixiang Xu, Xinyue Li. The Liouville integrability of integrable couplings of Volterra lattice equation. Commun. Nonlinear Sci. Numer. Simul.,15(6), 1664-1675 (2010).

l 2009年(6篇):

[12] Xinyue Li*, Xinzeng Wang, The integrable properties associated with discrete three-by-three matrix spectral problem, Commun. Theor. Phys., 52, 981-986 (2009).

[11] Xinyue Li*, Yuanqing Zhang, Qiulan Zhao. Positive and negative integrable hierarchies, associated conservation laws and Darboux transformation. J. Comput. Appl. Math., 233(4), 1096-1107 (2009).

[10] Xinyue Li*, Qiulan Zhao. The Darboux transformation associated with two-parameter lattice soliton equation. Commun. Nonlinear Sci. Numer. Simul., 14(7), 2956-2961 (2009).

[9] Xinyue Li*, Qiulan Zhao. New positive and negative hierarchies of integrable differential-difference equations and conservation laws. Commun. Theor. Phys., 51(1), 17 (2009).

[8] Qiulan Zhao*, Xinyue Li, Baiying He. Two super-integrable systems and associated super-hamiltonian structures. Mod. Phys. Lett. B, 23(27), 3253-3264 (2009).

[7] Qiulan Zhao*, Xixiang Xu, Xinyue Li. The Liouville integrable systems associated with a new discrete 3×3 matrix spectral problem. Appl. Math. Comput., 215(7), 2557-2564 (2009).

l 2008年(5篇):

[6] Xinyue Li*, Xixiang Xu, Qiulan Zhao. The integrable property of Lotka-Volterra type discrete nonlinear lattice soliton systems. Mod. Phys. Lett. B, 22(21), 2007-2019 (2008).

[5] Xinyue Li*, Xixiang Xu, Qiulan Zhao. Two hierarchies of integrable lattice equations associated with a discrete matrix spectral problem. Phys. Lett. A, 372(33), 5417-5426 (2008).

[4] 李欣越*, 徐西祥, 赵秋兰. 一族新的离散可积系的广义Hamilton系统及其可积耦. 四川师范大学学报(自然科学版), 01, 60-64 (2008).

[3] 赵秋兰*, 李欣越. 具有Liouville可积的非线性微分-差分方程族及其守恒律. 青岛大学学报(自然科学版), 03, 26-30+40 (2008).

[2]宋明*,董焕河, 常辉, 李欣越. KdV族的可积耦合及其哈密顿结构. 河南科学, 05, 517-519 (2008).

l 2007年(1篇):

[1] 李欣越, 赵秋兰, 李玉青. 基于离散的刘维尔可积系统族及其可积耦合. 青岛大学学报(自然科学版), 02, 27-31 (2007).


个人邮箱: xyli@sdust.edu.cn

欢迎对可积系统理论,代数几何、李对称分析、局域波解等非线性数学物理波动方程精确解及代数几何结构等感兴趣的研究生或高年级本科生与我联系。